MATH 210: Introduction to Analysis

Spring 2015-2016, Midterm 1, Duration: 60 min.

Exercise 1.

(a) ($\mathbf{1 5}$ points) Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be two sequences of real numbers converging respectively to l_{1} and l_{2}. Prove that $\left\{x_{n} y_{n}\right\}$ converges to $l_{1} l_{2}$.
(b) ($\mathbf{7}$ points) Prove that if $\left\{x_{n}\right\}$ is bounded and if $\left\{y_{n}\right\}$ converges to 0 then $\left\{x_{n} y_{n}\right\}$ converges to 0 .
(c) ($\mathbf{3}$ points) Find an example to illustrate that if the sequence $\left\{x_{n}\right\}$ in (b) is not bounded then the conclusion of (b) might fail.
(d) ($\mathbf{3}$ points) Find an example to illustrate that if the sequence $\left\{y_{n}\right\}$ in (b) converges to $l \neq 0$ then the conclusion of (b) might fail.

Exercise 2.

(a) ($\mathbf{1 0}$ points) Prove using the definition of convergence that the sequence $\left\{\frac{n+\frac{1}{n}}{n+1}\right\}$ converges to 1 .
(b) Consider the sequence $\left\{(-1)^{n}\right\}$
i. (7 points) Prove using the definition of convergence that $\left\{(-1)^{n}\right\}$ diverges.
ii. (5 points) Use another method (of your choice) to show that $\left\{(-1)^{n}\right\}$ diverges.

Exercise 3. Consider the sequence $\left\{x_{n}\right\}$ with $x_{n}=(-1)^{n}+\frac{1}{n}$.
(a) ($\mathbf{5}$ points) Find the $\bar{\varlimsup}$ of $\left\{x_{n}\right\}$. Detail you answer for full credits
(b) ($\mathbf{5}$ points) Find the \varliminf lim of $\left\{x_{n}\right\}$. Detail you answer for full credits
(c) (5 points) Deduce from (a) and (b) that $\left\{x_{n}\right\}$ does not converge.
(d) (5 points) Let $\left\{x_{n_{k}}\right\}$ be a convergent subsequence of $\left\{x_{n}\right\}$. Prove that the limit of $\left\{x_{n_{k}}\right\}$ is either equal to \varlimsup of $\left\{x_{n}\right\}$ or to $\underline{\mathrm{lim}}$ of $\left\{x_{n}\right\}$.

Exercise 4. A fix point theorem. Let $f:[0,1] \rightarrow[0,1]$ be an increasing function, that is if $x \leq y$ then $f(x) \leq f(y)$. Consider the set

$$
A=\{x \in[0,1] \mid f(x) \leq x\} .
$$

(a) ($\mathbf{5}$ points) Show that $1 \in A$.
(b) (5 points) Prove that A is bounded below.
(c) (5 points) Prove that inf A exists. Denote $\alpha:=\inf A$.
(d) (5 points) Prove that if $x \in A$ then $f(x) \in A$.
(e) Assume by contradiction that $\alpha<f(\alpha)$.
i. (5 points) Show that there is an element $a \in A$ such that $\alpha \leq a<f(\alpha)$.
ii. ($\mathbf{3}$ points) Prove that $a<f(a)$.
iii. (2 points) Deduce that $f(\alpha) \leq \alpha$.
(f) (2 points) Deduce from (e) that $\alpha \in A$.
(g) (3 points) Conclude that $f(\alpha)=\alpha$.

