MATH 210: Introduction to Analysis

Spring 2015-2016, Midterm 1, Duration: 60 min.

Exercise 1.

- (a) (15 points) Let $\{x_n\}$ and $\{y_n\}$ be two sequences of real numbers converging respectively to l_1 and l_2 . Prove that $\{x_ny_n\}$ converges to l_1l_2 .
- (b) (7 points) Prove that if $\{x_n\}$ is bounded and if $\{y_n\}$ converges to 0 then $\{x_ny_n\}$ converges to 0.
- (c) (3 points) Find an example to illustrate that if the sequence $\{x_n\}$ in (b) is not bounded then the conclusion of (b) might fail.
- (d) (3 points) Find an example to illustrate that if the sequence $\{y_n\}$ in (b) converges to $l \neq 0$ then the conclusion of (b) might fail.

Exercise 2.

(a) (10 points) Prove using the definition of convergence that the sequence $\left\{\frac{n+\frac{1}{n}}{n+1}\right\}$ converges to 1.

- (b) Consider the sequence $\{(-1)^n\}$
 - i. (7 points) Prove using the definition of convergence that $\{(-1)^n\}$ diverges.
 - ii. (5 points) Use another method (of your choice) to show that $\{(-1)^n\}$ diverges.

Exercise 3. Consider the sequence $\{x_n\}$ with $x_n = (-1)^n + \frac{1}{n}$.

- (a) (5 points) Find the $\overline{\lim}$ of $\{x_n\}$. Detail you answer for full credits
- (b) (5 points) Find the $\underline{\lim}$ of $\{x_n\}$. Detail you answer for full credits
- (c) (5 points) Deduce from (a) and (b) that $\{x_n\}$ does not converge.
- (d) (5 points) Let $\{x_{n_k}\}$ be a convergent subsequence of $\{x_n\}$. Prove that the limit of $\{x_{n_k}\}$ is either equal to $\overline{\lim}$ of $\{x_n\}$ or to $\underline{\lim}$ of $\{x_n\}$.

Exercise 4. A fix point theorem. Let $f : [0,1] \to [0,1]$ be an increasing function, that is if $x \le y$ then $f(x) \le f(y)$. Consider the set

 $A = \{ x \in [0, 1] \mid f(x) \le x \}.$

- (a) (5 points) Show that $1 \in A$.
- (b) (**5 points**) Prove that A is bounded below.
- (c) (5 points) Prove that $\inf A$ exists. Denote $\alpha := \inf A$.
- (d) (5 points) Prove that if $x \in A$ then $f(x) \in A$.
- (e) Assume by contradiction that $\alpha < f(\alpha)$.
 - i. (5 points) Show that there is an element $a \in A$ such that $\alpha \leq a < f(\alpha)$.
 - ii. (3 points) Prove that a < f(a).
 - iii. (2 points) Deduce that $f(\alpha) \leq \alpha$.
- (f) (**2 points**) Deduce from (e) that $\alpha \in A$.
- (g) (**3 points**) Conclude that $f(\alpha) = \alpha$.